首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12875篇
  免费   1382篇
  国内免费   632篇
电工技术   454篇
综合类   691篇
化学工业   5967篇
金属工艺   453篇
机械仪表   169篇
建筑科学   724篇
矿业工程   271篇
能源动力   1181篇
轻工业   938篇
水利工程   27篇
石油天然气   389篇
武器工业   101篇
无线电   858篇
一般工业技术   1929篇
冶金工业   499篇
原子能技术   51篇
自动化技术   187篇
  2024年   45篇
  2023年   180篇
  2022年   297篇
  2021年   490篇
  2020年   482篇
  2019年   430篇
  2018年   322篇
  2017年   454篇
  2016年   407篇
  2015年   441篇
  2014年   742篇
  2013年   713篇
  2012年   881篇
  2011年   1007篇
  2010年   743篇
  2009年   774篇
  2008年   711篇
  2007年   1037篇
  2006年   914篇
  2005年   841篇
  2004年   647篇
  2003年   528篇
  2002年   374篇
  2001年   306篇
  2000年   253篇
  1999年   209篇
  1998年   153篇
  1997年   114篇
  1996年   95篇
  1995年   54篇
  1994年   54篇
  1993年   47篇
  1992年   43篇
  1991年   15篇
  1990年   16篇
  1989年   17篇
  1988年   11篇
  1987年   6篇
  1986年   5篇
  1985年   8篇
  1984年   6篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1977年   1篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 271 毫秒
1.
Aromatic and functional polymers with processibility derived from biobased starting materials are prerequisite considering sustainable society. Poly(2,5-benzimidazole)s are rigid-rod polymers to show ultrahigh thermal stability such as flame retardance, while usually suffer from poor solubility. Here, poly(benzimidazole-co-amide)s are synthesized from two biobased monomers, 3,4-diaminobenzoic acid and a semirigid comonomer, 4-aminohydrocinnamic acid. The copolymers with an amide composition of 80 mol% and higher are soluble in widely used polar solvents to fabricate the films keeping high flame retardance, which is comparable with popular high-performance polymers such as aromatic polyimides, polyetheretherketone, polyphenylene sulfide, etc.  相似文献   
2.
Sensitivity and multi-directional motivation are major two factors for developing optimized humidity-response materials, which are promising for sensing, energy production, etc. Organic functional groups are commonly used as the water sensitive units through hydrogen bond interactions with water molecules in actuators. The multi-coordination ability of inorganic ions implies that the inorganic ionic compounds are potentially superior water sensitive units. However, the particle forms of inorganic ionic compounds produced by classical nucleation limit the number of exposed ions to interact with water. Recent progress on the inorganic ionic oligomers has broken through the limitation of classical nucleation, and realized the molecular-scaled incorporation of inorganic ionic compounds into an organic matrix. Here, the incorporation of hydrophilic calcium carbonate ionic oligomers into hydrophobic poly(vinylidene fluoride) (PVDF) is demonstrated. The ultra-small calcium carbonate oligomers within a PVDF film endow it with an ultra-sensitive, reversible, and bidirectional response. The motivation ability is superior to other bidirectional humidity-actuators at present, which realizes self-motivation on an ice surface, converting the chemical potential energy of the humidity gradient from ice to kinetic energy.  相似文献   
3.
A meso-scale jet flame model was established for the flame ports of domestic gas stoves. The influences of hydrogen addition ratio (β = 0%–25%) on the combustion limits were explored. The results show that with the increase of hydrogen addition ratio, the blow-off limit increases obviously, while the extinction limit decreases slightly, namely, the combustible range expands significantly. Quantitative analysis was carried out in terms of chemical effect and thermal effect. It was found that hydrogen addition will reduce O2 fraction in the pre-mixture for a constant equivalence ratio. Under near-extinction limit condition, since the flame is located at the nozzle exit, the external O2 cannot be entrained into or diffuse into the upstream of the flame, which leads to the decrease of reaction rate. However, for the near-blow-off cases, the external O2 can be entrained and diffuse into the flame, which compensates the difference of O2 content in the pre-mixture. Therefore, the combustion reaction is enhanced by hydrogen addition because more H radicals can be produced. In addition, as the flame is located closer to the tube with the increase of hydrogen addition ratio, heat transfer between flame and tube wall is augmented and the preheating of fresh mixture is strengthened by the inner tube wall. This heat recirculation effect becomes especially notable in low velocity cases. In conclusion, the extension of extinction limit by hydrogen addition is attributed to the thermal effect, while the increase of blow-off limit is mainly due to the intensification of chemical effect.  相似文献   
4.
This work is focused on the explosion characteristics of premixed gas containing different volume fractions of hydrogen in a narrow channel (1000 mm × 50 mm × 10 mm) under the circumstance of stoichiometric ratio. The ignition positions were set in the closed end and the middle of the pipeline respectively. The results showed that when the gas was ignited at the pipeline closed end, the propagating flame was tulip structure for different premixed gas. When the hydrogen volume fraction was less than 40%, the flame propagation speed increased significantly with the rise of hydrogen volume fraction, and the overpressure peak also appeared obviously in advance. However, when the volume fraction of hydrogen was more than 40%, the increase of flame propagation speed and the overpressure peak occurrence time varied slightly. Furthermore, when the ignition position was placed in the middle of the pipeline, the flame propagation speed propagating to the opening end was much faster than that propagating to the closing end, and there was no tulip shape when the flame propagates to the opening end. The flame propagating to the closed end appeared tulip shape under the influence of airflow, and high-frequency flame oscillation occurred during the propagation. This work shows that the hydrogen volume fraction and ignition position significantly affected the flame structure, flame front speed, and explosion overpressure.  相似文献   
5.
In the past decade, the perovskite solar cell (PSC) has attracted tremendous attention thanks to the substantial efforts in improving the power conversion efficiency from 3.8% to 25.5% for single-junction devices and even perovskite-silicon tandems have reached 29.15%. This is a result of improvement in composition, solvent, interface, and dimensionality engineering. Furthermore, the long-term stability of PSCs has also been significantly improved. Such rapid developments have made PSCs a competitive candidate for next-generation photovoltaics. The electron transport layer (ETL) is one of the most important functional layers in PSCs, due to its crucial role in contributing to the overall performance of devices. This review provides an up-to-date summary of the developments in inorganic electron transport materials (ETMs) for PSCs. The three most prevalent inorganic ETMs (TiO2, SnO2, and ZnO) are examined with a focus on the effects of synthesis and preparation methods, as well as an introduction to their application in tandem devices. The emerging trends in inorganic ETMs used for PSC research are also reviewed. Finally, strategies to optimize the performance of ETL in PSCs, effects the ETL has on J–V hysteresis phenomenon and long-term stability with an outlook on current challenges and further development are discussed.  相似文献   
6.
Inorganic nanoparticles (NPs) offer significant advantages to the biomedical field owing to their large surface area, controllable structures, diverse surface chemistry, and unique optical and physical properties. Researchers worldwide have shown that inorganic NPs and the released metal ions can act as therapeutic agents in targeted tissues or to cure various diseases without acute toxicity. In this progress report, the recent developments in inorganic NPs with different compositions directly used as therapeutics are discussed. First, the recent convergence of nanotechnology and biotechnology in biomedical applications as well as the unique functions, features, and advantages of inorganic NPs in biomedical applications are summarized. Thereafter, the biological effects of inorganic compositions in NPs which include balancing the intracellular redox environment, regulating the specific cellular signaling and cellular behaviors, and apoptosis are explained. In addition, the emerging therapeutic applications of inorganic NPs in various diseases are exemplified. Finally, the perspectives and challenges for overcoming the weaknesses of inorganic NPs as therapeutics are discussed. By carefully considering and investigating the biological effects of inorganic NPs and metal ions released from NPs, more promising inorganic NPs based therapeutic agents can be developed.  相似文献   
7.
王东 《水泥工程》2021,34(4):42-44
根据水泥烧成热耗的组成,降低高温设备表面散热是降低水泥烧成热耗的重要途径之一,而减少高温窑炉墙壁的热传导可有效降低设备的表面散热。本文在介绍无机内保温涂层隔热原理的基础上,对保温涂层的应用效果进行了对比研究,通过在传统耐火隔热材料的基础上增加新型无机内保温涂层,可有效降低高温设备外表面温度,减少水泥生产中的散热损失,达到节能降耗的目的。  相似文献   
8.
Upholstered furniture is often manufactured with polyurethane foam (PUF) containing flame retardants (FRs) to prevent the risk of a fire and/or to meet flammability regulations, however, exposure to certain FRs and other chemicals have been linked to adverse health effects. This study developed a new methodology for evaluating volatile organic compound (VOC) and FR exposures to users of upholstered furniture by simulating use of a chair in a controlled exposure chamber and assessing the health significance of measured chemical exposure. Chairs with different fire-resistant technologies were evaluated for VOC and FR exposures via inhalation, ingestion, and dermal contact exposure routes. Data show that VOC exposure levels are lower than threshold levels defined by the US and global indoor air criteria. Brominated FRs were not detected from the studied chairs. The organophosphate FRs added to PUF were released into the surrounding air (0.4 ng/m3) and as dust (16 ng/m2). Exposure modeling showed that adults are exposed to FRs released from upholstered furniture mostly by dermal contact and children are exposed via dermal and ingestion exposure. Children are most susceptible to FR exposure/dose (2 times higher average daily dose than adults) due to their frequent hand to mouth contact.  相似文献   
9.
The explosion venting duct can effectively reduce the hazard degree of a gas explosion and conduct the venting energy to the safe area. To investigate the flame quantitative propagation law of explosion venting with a duct, the effects of hydrogen fraction and explosion venting duct length on jet flame propagation characteristics of premixed H2-air mixtures were analyzed through experiment and simulation. The experiment results under initial conditions of room temperature and 1 atm show that when hydrogen fraction was high enough, part of the unburned hydrogen was mixed with air again to reach an ignitable concentration, resulting in the secondary combustion was easier produced and the duration of the secondary flame increased. With the increase of venting duct length, the flame front distance and propagation velocity increased. Meanwhile, the spatial distribution of pressure field and temperature field, and the propagation process and mechanism of the flame venting with a duct were analyzed using FLUENT software. The variation of the pressure wave and the pressure reflection oscillation law in the explosion venting duct was captured. Therefore, in the industrial explosion venting design with a duct, the hazard caused by the coupling of venting pressure and venting flame under different fractions should be considered comprehensively.  相似文献   
10.
5-(Hydroxymethyl)furfural (5-HMF) is a vital platform molecule from which a variety of high-value-added fine chemicals and polymerizable monomers can be prepared. The use of solid acids to catalyze the conversion of biomass into 5-HMF is environmentally friendly and economical. However, exploiting the high yield of 5-HMF in a highly concentrated reactant system is challenging. Herein, we present a laser-assisted method for preparing highly acidic monolithic acidic catalysts. A monolithic acidic catalyst based on metal Zr sheets was synthesized and used to catalytically convert 30 wt% fructose into 5-HMF (conversion rate: 96%; yield: 95%). The catalyst was immediately separated from the reaction solution by direct removal at the end of the reaction. Catalytic efficiency was largely unaffected after 10 cycles of use, and the same catalytic efficiency was observed after laser-regeneration, highlighting the potential industrial applicability of the developed catalyst.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号